Human Pose Estimation in Space and Time Using 3D CNN
نویسندگان
چکیده
This paper explores the capabilities of convolutional neural networks to deal with a task that is easily manageable for humans: perceiving 3D pose of a human body from varying angles. However, in our approach, we are restricted to using a monocular vision system. For this purpose, we apply a convolutional neural network approach on RGB videos and extend it to three dimensional convolutions. This is done via encoding the time dimension in videos as the 3rd dimension in convolutional space, and directly regressing to human body joint positions in 3D coordinate space. This research shows the ability of such a network to achieve stateof-the-art performance on the selected Human3.6M dataset, thus demonstrating the possibility of successfully representing temporal data with an additional dimension in the convolutional operation.
منابع مشابه
تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملMonocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision
We propose a CNN-based approach for 3D human body pose estimation from single RGB images, that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. We propose novel CNN supervision techniques, using a regularization structure while training that extends the concept of multi-level skip connections, and leverage first and...
متن کاملاستفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملV2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D dept...
متن کاملMoCap-guided Data Augmentation for 3D Pose Estimation in the Wild
This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based...
متن کامل